Interactive Control of Diverse Complex Characters with Neural Networks
نویسندگان
چکیده
We present a method for training recurrent neural networks to act as near-optimal feedback controllers. It is able to generate stable and realistic behaviors for a range of dynamical systems and tasks – swimming, flying, biped and quadruped walking with different body morphologies. It does not require motion capture or task-specific features or state machines. The controller is a neural network, having a large number of feed-forward units that learn elaborate state-action mappings, and a small number of recurrent units that implement memory states beyond the physical system state. The action generated by the network is defined as velocity. Thus the network is not learning a control policy, but rather the dynamics under an implicit policy. Essential features of the method include interleaving supervised learning with trajectory optimization, injecting noise during training, training for unexpected changes in the task specification, and using the trajectory optimizer to obtain optimal feedback gains in addition to optimal actions. Figure 1: Illustration of the dynamical systems and tasks we have been able to control using the same method and architecture. See the video accompanying the submission.
منابع مشابه
Prediction of breeding values for the milk production trait in Iranian Holstein cows applying artificial neural networks
The artificial neural networks, the learning algorithms and mathematical models mimicking the information processing ability of human brain can be used non-linear and complex data. The aim of this study was to predict the breeding values for milk production trait in Iranian Holstein cows applying artificial neural networks. Data on 35167 Iranian Holstein cows recorded between 1998 to 2009 were ...
متن کاملRobust Backstepping Control of Induction Motor Drives Using Artificial Neural Networks and Sliding Mode Flux Observers
In this paper, using the three-phase induction motor fifth order model in a stationary twoaxis reference frame with stator current and rotor flux as state variables, a conventional backsteppingcontroller is first designed for speed and rotor flux control of an induction motor drive. Then in orderto make the control system stable and robust against all electromechanical parameter uncertainties a...
متن کاملOn the use of multi-agent systems for the monitoring of industrial systems
The objective of the current paper is to present an intelligent system for complex process monitoring, based on artificial intelligence technologies. This system aims to realize with success all the complex process monitoring tasks that are: detection, diagnosis, identification and reconfiguration. For this purpose, the development of a multi-agent system that combines multiple intelligences su...
متن کاملOn the convergence speed of artificial neural networks in the solving of linear systems
Artificial neural networks have the advantages such as learning, adaptation, fault-tolerance, parallelism and generalization. This paper is a scrutiny on the application of diverse learning methods in speed of convergence in neural networks. For this aim, first we introduce a perceptron method based on artificial neural networks which has been applied for solving a non-singula...
متن کاملHandwritten Character Recognition using Modified Gradient Descent Technique of Neural Networks and Representation of Conjugate Descent for Training Patterns
The purpose of this study is to analyze the performance of Back propagation algorithm with changing training patterns and the second momentum term in feed forward neural networks. This analysis is conducted on 250 different words of three small letters from the English alphabet. These words are presented to two vertical segmentation programs which are designed in MATLAB and based on portions (1...
متن کامل